
Achieving High Sustained Performance in an
Unstructured Mesh CFD Application

W. K. Anderson,∗ W. D. Gropp,† D. K. Kaushik,‡

D. E. Keyes,§ and B. F. Smith¶

Abstract

This paper highlights a three-year project by an interdisciplinary team on a
legacy F77 computational fluid dynamics code, with the aim of demonstrating that
implicit unstructured grid simulations can execute at rates not far from those of
explicit structured grid codes, provided attention is paid to data motion complexity
and the reuse of data positioned at the levels of the memory hierarchy closest to the
processor, in addition to traditional operation count complexity. The demonstra-
tion code is from NASA and the enabling parallel hardware and (freely available)
software toolkit are from DOE, but the resulting methodology should be broadly
applicable, and the hardware limitations exposed should allow programmers and
vendors of parallel platforms to focus with greater encouragement on sparse codes
with indirect addressing. This snapshot of ongoing work shows a performance of
15 microseconds per degree of freedom to steady-state convergence of Euler flow
on a mesh with 2.8 million vertices using 3072 dual-processor nodes of ASCI Red,
corresponding to a sustained floating-point rate of 0.227 Tflop/s.

∗Fluid Mechanics and Acoustics Division, NASA Langley Research Center, Hampton, VA 23682,
w.k.anderson@larc.nasa.gov .

†Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439,
gropp@mcs.anl.gov . This work was supported in part by the Mathematical, Information, and Com-
putational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, U.S.
Department of Energy, under Contract W-31-109-Eng-38.

‡Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 and
Computer Science Department, Old Dominion University, Norfolk, VA 23529,kaushik@cs.odu.edu .
This work was supported by a GAANN Fellowship from the U.S. Department of Education and by Argonne
National Laboratory under contract 983572401.

§Mathematics & Statistics Department, Old Dominion University, Norfolk, VA 23529, ISCR, Lawrence
Livermore National Laboratory, Livermore, CA 94551, and ICASE, NASA Langley Research Center, Hamp-
ton, VA 23681,keyes@icase.edu . This work was supported by the National Science Foundation un-
der grant ECS-9527169, by NASA under contracts NAS1-19480 and NAS1-97046, by Argonne National
Laboratory under contract 982232402, and by Lawrence Livermore National Laboratory under subcontract
B347882.

¶Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439,
bsmith@mcs.anl.gov . This work was supported in part by the Mathematical, Information, and Com-
putational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, U.S.
Department of Energy, under Contract W-31-109-Eng-38.

1

1 Overview

Many applications of economic and national security importance require the solution
of nonlinear partial differential equations (PDEs). In many cases, PDEs possess a wide
range of time scales—some (e.g., acoustic) faster than the phenomena of prime in-
terest (e.g., convective), suggesting the need for implicit methods. In addition, many
applications are geometrically complex and possess a wide range of length scales, re-
quiring an unstructured mesh to adequately resolve the problem without requiring an
excessive number of mesh points and to accomplish mesh generation and adaptation
(almost) automatically. The best algorithms for solving nonlinear implicit problems
are often Newton methods, which themselves require the solution of very large, sparse
linear systems. The best algorithms for these sparse linear problems, particularly at
very large sizes, are often preconditioned iterative methods. This nested hierarchy of
tunable algorithms has proved effective in solving complex problems in areas such as
aerodynamics, combustion, radiation transport, and global circulation. Typically, for
steady-state solutions from a trivial initial guess, the number of “work units” (evalua-
tions of the discrete residuals on the finest mesh on which the problem is represented)
is around103 (to achieve reductions in the norm of the residual of10−8 to 10−12). Al-
though these algorithms are efficient (in the sense of using relatively few floating-point
operations to arrive at the final result), they do not necessarily achieve the absolute
flops-per-second (flop/s) ratings that less efficient or less versatile algorithms may [3].

Our submission focuses on the time to solution rather than the achieved floating-
point performance as the figure of merit. We have achieved a performance of 15 mi-
croseconds per degree of freedom on a mesh with 2.8 million vertices using 3072 dual-
processor nodes of ASCI Red, and 36 microseconds per degree of freedom on 1024
processors of an SGI/Cray T3E. These figures correspond to sustained floating-point
rates of 227 Gflop/s and 76 Gflop/s, respectively. The code is also nearly scalable,
showing linear scaling in computation rate between 128 and 3072 nodes for a fixed-
size problem, and only a modest degradation in algebraic convergence rate over the
same range.

The code spends almost all of its time in two phases: flux computations (to evaluate
conservation law residuals) and sparse linear algebraic kernels. Analysis [8] shows that
the linear algebraic kernels are running at close to the aggregate memory-bandwidth
limit on performance, and the flux computations are bounded either by memory band-
width or instruction scheduling. This level of performance (in excess of 100 Gflop/s) is
well above what is commonly considered achievable for sparse-matrix and unstructured
mesh computations and requires a combination of scalable algorithms and data struc-
ture optimizations, as well as powerful, tightly networked computers. See, for example,
the comments by the “High End Crusader” [6, 7], who has called for a benchmark to
focus attention on the difficulty of sparse, unstructured problems.

As a bonus, our message-passing code is completely portable, allowing the appli-
cation to take advantage of continuing improvements in hardware performance without
further software development.

2

2 The Application

The application code, FUN3D, is a tetrahedral vertex-centered unstructured mesh code
developed by W. K. Anderson of the NASA Langley Research Center for compressible
and incompressible Euler and Navier-Stokes equations [1, 2]. FUN3D uses a control
volume discretization with variable-order Roe schemes for approximating the convec-
tive fluxes and a Galerkin discretization for the viscous terms. FUN3D is being used for
design optimization of airplanes, automobiles, and submarines, with irregular meshes
comprising several million mesh points. The optimization loop involves many analysis
cycles. Thus, reaching the steady-state solution in each analysis cycle in a reasonable
amount of time is crucial to conducting the design optimization. From the beginning,
our effort has been focused on minimizing the time to convergence without compro-
mising scalability, by means of appropriate algorithms and architecturally efficient data
structures.

We have ported FUN3D into PETSc framework and tuned it for good cache perfor-
mance and distributed parallel systems, using the single program multiple data (SPMD)
programming model. This new variant (PETSc-FUN3D) is being used to run Navier-
Stokes applications with the Spalart-Almaras turbulence model on modest-sized prob-
lems, and we expect to scale up these more phenomenologically complex problems in
coming months, while also beginning to cope with parallelization of the preprocessing.

Thus far, our large-scale parallel experience with PETSc-FUN3D is with the com-
pressible or incompressible Euler subset, but nothing in the solution algorithms or soft-
ware changes with additional physical phenomenology. Of course, the convergence
rate will vary with conditioning, as determined by Mach and Reynolds numbers and the
correspondingly induced mesh adaptivity. Furthermore, robustness becomes more of
an issue in problems admitting shocks or using turbulence models. The lack of nonlin-
ear robustness is a fact of life that is largely outside of the domain of parallel scalability.
In fact, when nonlinear robustness is restored in the usual manner, through pseudo-
transient continuation, the conditioning of the linear inner iterations is enhanced, and
parallel scalability may be improved. In some sense, the Euler code, with its smaller
number of flops per point per iteration, and its aggressive pseudotransient buildup to-
ward the steady-state limit, may be amore, not less, severe test of parallel performance.

3 Algorithms and Data Structures

Achieving high sustained performance, in terms of solutions per second, involves three
aspects. The first is a scalable algorithm in the sense of convergence rate. The sec-
ond is good per-processor performance on contemporary cache-based microprocessors.
The third is a scalable implementation, in the sense of time per iteration as the num-
ber of processors increases. Our nonlinear method, pseudo-transient Newton-Krylov-
Schwarz (ΨNKS), is an efficient algorithm, as the chart of nonlinear iterations in Fig-
ure 3 shows. The per-processor performance is also quite good; in fact, it is close to
the memory-bandwidth limit (a more realistic measure of achievable performance than
peak floating-point for sparse problems [8]). Moreover, on any architecture with a suf-
ficiently rich interconnection network,ΨNKS leads to good per-iteration scalability, as

3

argued from a simple analytical model in [14].

3.1 ΨNKS Solver

Our implicit algorithmic framework for advancing toward an assumed steady state,
f(u) = 0, has the form(1

∆t`)u` + f(u`) = (1
∆t`)u`−1, where∆t` → ∞ as` → ∞,

u represents the fully coupled vector of unknowns, andf(u) is the vector of nonlinear
conservation laws.

Each member of the sequence of nonlinear problems,` = 1, 2, . . ., is solved with
an inexact Newton method. The resulting Jacobian systems for the Newton correc-
tions are solved with a Krylov method, relying directly only on matrix-free operations.
The Krylov method needs to be preconditioned for acceptable inner iteration conver-
gence rates, and the preconditioning can be the “make-or-break” feature of an implicit
code. A good preconditioner saves time and space by permitting fewer iterations in the
Krylov loop and smaller storage for the Krylov subspace. An additive Schwarz precon-
ditioner [5] accomplishes this in a concurrent, localized manner, with an approximate
solve in each subdomain of a partitioning of the global PDE domain. The coefficients
for the preconditioning operator are derived from a lower-order, sparser, and more dif-
fusive discretization than that used forf(u), itself. Applying any preconditioner in
an additive Schwarz manner tends to increase flop rates over the same preconditioner
applied globally, since the smaller subdomain blocks maintain better cache residency,
even apart from concurrency considerations [17]. Combining a Schwarz preconditioner
with a Krylov iteration method inside an inexact Newton method leads to a synergistic,
parallelizable nonlinear boundary value problem solver with a classical name: Newton-
Krylov-Schwarz (NKS) [9]. We combine NKS with pseudo-timestepping [13] and use
the shorthandΨNKS to describe the algorithm.

To implement this algorithm in FUN3D, we employ the PETSc package [4], which
features distributed data structures—index sets, vectors, and matrices—as fundamen-
tal objects. Iterative linear and nonlinear solvers are implemented within PETSc in a
data structure-neutral manner, providing a uniform application programmer interface.
Portability is achieved in PETSc through MPI, but message-passing detail is not re-
quired in the application. We use MeTiS [10] to partition the unstructured mesh.

3.2 Memory-Centric Computation

We view a PDE computation predominantly as a mix of loads and stores with embedded
floating-point operations (flops). Since flops are cheap relative to memory references,
we concentrate on minimizing the memory references and emphasize strong sequen-
tial performance as one of the factors needed for aggregate performance worthy of the
theoretical peak of a parallel machine. We useinterlacing(creating spatial locality for
the data items needed successively in time),structural blockingfor a multicomponent
system of PDEs (cutting the number of integer loads significantly, and enhancing reuse
of data items in registers), andvertex and edge reorderings(increasing the level of tem-
poral locality). Applying these techniques required whole-program transformations of
certain loops of the original vector-oriented FUN3D, but raised the per-processor per-

4

0

20

40

60

80

100

120

140

160

180

SP Origin Pentium

Base NOER Interlacing NOER Blocking NOER
Base Interlacing Blocking

Figure 1: The effect of cache optimizations on the average execution time for one
nonlinear iteration.BASE denotes the case without any optimizations, andNOER
denotes no edge reordering. The performance improves by a factor of about 2.5 on the
Pentium and 7.5 on the IBM SP. The processor details are: 120 MHz IBM SP (P2SC
“thin”, 128 KB L1), 250 MHz Origin 2000 (R10000, 32 KB L1, and 4 MB L2), 400
MHz Pentium II (running Windows NT 4.0, 16 KB L1, and 512 KB L2).

formance by a factor of between 2.5 and 7 (Figure 1), depending on the microprocessor
and optimizing compiler [12].

The importance of memory bandwidth to the overall performance is suggested by
the single-processor performance of PETSc-FUN3D shown in Figure 2. The per-
formance of PETSc-FUN3D is compared to the peak performance and the result of
the STREAM benchmark [15] which measures achievable performance for memory
bandwidth-limited computations. These comparisons show that the STREAM results
are much better indicators of realized performance than the peak numbers. The parts of
the code that are memory bandwidth-limited (like the sparse triangular matrix solution
phase, which is responsible for 25% of the overall execution time) are bound to show
poor performance, as compared to dense matrix-matrix operations, which often come
within 10–20% of peak. Even parts of the code that are not memory intensive, often
achieve much less than peak performance because of the limits on the number of basic
operations that can be performed in a single clock cycle [8]. This is true for the flux
calculation routine in PETSc-FUN3D, which consumes over 50% of the overall exe-
cution time. Instruction scheduling limits the performance to 47% of the peak on 250
MHz SGI Origin 2000 even under a perfect memory system (leading to an estimate of
235 Mflops/s), which is close to the value of 209 Mflops/s experimentally measured by
the Origin’s hardware counters.

5

0

100

200

300

400

500

600

700

800

900

SP O r ig in T3E

P eak M flops/s Stream Tr iad M flops/s O bserved M flops/s

Figure 2: Sequential performance of PETSc-FUN3D for a coarse mesh of 22,677 ver-
tices (with 4 unknowns per vertex). The processor details for IBM SP and Origin 2000
are the same as in Figure 1. The SGI/Cray T3E is based on a 450 MHz DEC Alpha
21164 with 8 KB L1 cache and 96 KB unified L2 cache.

The basic philosophy of any efficient parallel computation is “owner computes,”
with message merging and overlapping communication with computation where pos-
sible via split transactions. Each processor “ghosts” its stencil dependencies on its
neighbors’ data. Grid functions are mapped from a global (user) ordering into con-
tiguous local orderings (which, in unstructured cases, are designed to maximize spatial
locality for cache line reuse). Scatter/gather operations are created between local se-
quential vectors and global distributed vectors, based on runtime-deduced connectivity
patterns.

4 Measuring the Parallel Performance

We use PETSc’s profiling and logging features to measure the parallel performance.
PETSc logs many different types of events and provides valuable information about
time spent, communications, load balance, and so forth, for each logged event. PETSc
uses manual counting of flops, which are afterwards aggregated over all the processors
for parallel performance statistics. We have observed that the flops reported by PETSc
are close to (within 10 percent of) the values statistically measured by hardware coun-
ters on R10000 processor.

PETSc uses the best timers available in each processing environment. In our rate
computations, we exclude the initialization time devoted to I/O and data partitioning.

6

To suppress timing variations caused by paging in the executable from disk, we preload
the code into memory with one nonlinear iteration, then flush, reload the initial iterate,
and begin performance measurements.

Since we are solving large fixed-size problems on distributed memory machines, it
is not reasonable to base parallel scalability on a uniprocessor run, which would thrash
the paging system. Our base processor number is such that the problem has just fit
into the local memory. We have employed smaller sequential cases to optimize cached
data reuse [11, 12] to minimize the execution time. In the results below, we decompose
the parallel efficiency into two factors:algorithmic efficiency, measuring the effect of
increased granularity on the number of iterations to convergence, andimplementation
efficiency, measuring the effect of increased granularity on per-iteration performance.

5 Scalability Studies

We present three aspects of scalability in this section. Throughout we use unstructured
tetrahedral meshes of the standard Onera M6 wing closed with a symmetry plane in-
board, prepared for us by colleagues at the NASA Langley Research Center. On the two
machines with the finest granularity available to us to date, a Cray T3E with 1024 600
MHz Alpha processors and a partition of ASCI Red with 3072 333 MHz Pentium Pro
dual-processor nodes, we show several metrics of fixed-size scalability on our finest
mesh. On machines representative of the two ASCI Blue machines (an IBM SP and
an SGI Origin) and on a T3E with 450 MHz processors, we compare executions of the
same code on an intermediate fixed-size problem on up to 80 processors (the maximum
available on our SP configuration). Finally, to convey some idea of the sensitivity of the
Newton method to the severity of the nonlinearity, and of the sensitivity of the precon-
ditioned Krylov solver with respect to different conditioning inherited from different
Mach numbers of the simulation we present some comparisons across Mach number
(incompressible to supersonic). This study also gives an indication of the sensitivity of
the floating point performance to the blocksize of the unknown vector, which is four in
the incompressible case and five in the compressible cases.

5.1 Parallel Scalability on the T3E

The parallel scalability of PETSc-FUN3D is shown in Figure 3 for a mesh with 2.8
million vertices running on up to 1024 Cray T3E processors. We see that the imple-
mentation efficiency of parallelization (i.e., the efficiency on a per-iteration basis) is
82 percent in going from 128 to 1024 processors. The number of iterations is also
fairly flat over the same eightfold range of processor number (rising from 37 to 42), re-
flecting reasonable algorithmic scalability. This is much less serious degradation than
predicted by the linear elliptic theory (see [16]); pseudo-timestepping—required by the
nonlinearity—is responsible. The overall efficiency is the product of the implementa-
tion efficiency and the algorithmic efficiency. The Mflop/s per processor are also close
to flat over this range, even though the relevant working sets in each subdomain vary by
nearly a factor of eight. This emphasizes the requirement of good serial performance
for good parallel performance.

7

128 256 384 512 640 768 896 1024
0

0.5

1

1.5

2

2.5x 10
4

Avg. Vertices per Proc.

128 256 384 512 640 768 896 1024
0

500

1000

1500

2000

2500
Execution Time (s)

128 256 384 512 640 768 896 1024
0

0.2

0.4

0.6

0.8

1

1.2
Implementation Efficiency

128 256 384 512 640 768 896 1024
0

10

20

30

40

50
Nonlinear Iterations

128 256 384 512 640 768 896 1024
0

20

40

60

80

100
Mflop/s per Proc.

128 256 384 512 640 768 896 1024
0

20

40

60

80
Aggregate Gflop/s

Figure 3: Parallel performance for a fixed size mesh of 2.8 million vertices run on up
to 1024 Cray T3E 600 MHz Alpha processors.

8

5.2 Parallel Scalability on ASCI Red

The same fixed-size problem is run on large ASCI Red configurations with sample
scaling results shown in Figure 4. The implementation efficiency is 94% in going from
256 to 2048 nodes (and 95% in going from 128 to 2048 nodes, due to slightly worse
cache performance in the 128-node run). For the data in Figure 4, we employed the
-procs 1 runtime option on ASCI Red, which dedicates a communication processor
to every execution processor. The-procs 2 runtime option enables 2-processor-per-
node multithreading during threadsafe, communication-free portions of the code. We
have activated this feature for the floating-point-intensive flux computation subroutine
alone. On 2048 nodes, the resulting Gflop/s rate is 156, or 30% greater than for the
single-threaded case on the same number of nodes. On 3072 nodes, the largest run we
have been able to make on the unclassified side of the machine to date, the resulting
GFlop/s rate is 227. Undoubtedly, further improvements to the algebraic solver portion
of the code are also possible through multithreading, but the additional coding work
does not seem justified at present.

5.3 Parallel Scalability across Architectures

Cross-platform performance comparisons of a medium-size wing problem over a com-
mon set of processor numbers are given in Table 1, which lists overall efficiencies. The
16-processor run has approximately 22,369 vertices per processor; the 80-processor
run has approximately 4,473. Decreasing volume-to-surface ratios in the subdomains
and increasing depth of the global reduction spanning tree of the processors lead to
gradually decaying efficiency. The convergence rate, in terms of pseudo-time steps
to achieve a relative reduction of steady-state residual norm of10−12, degrades only
slowly with increased partitioning. Exactly one Newton iteration is performed on each
pseudo-time step, and the Krylov space restart size is 30, with a maximum of one
restart. The slight differences in the numbers of timesteps arise from slightly different
floating point arithmetic and/or noncommutative summation of global inner products,
which lead to slightly different trajectories to the same steady state. The Origin is the
fastest per processor (achieving the highest percentage of peak sequentially). The T3E
has the best scalability, due to its torus network, which is fast compared with sequential
processor performance. The full problem fits on smaller numbers of processors on the
Origin, but “false” superunitary parallel scalability results because of the cache thrash-
ing when too many vertices are assigned to a processor; 5,000 to 20,000 vertices per
processor is a reasonable load for this code.

A plot showing aggregate flop/s performance and a log-log plot showing execution
time for our largest case on the three most capable machines to which we have thus far
had access are shown in Figures 5 and 6. In both figures, lines of unit slope (positive
and negative, resp.) show the departure from optimality. Note that although the ASCI
Red flop/s rate scales nearly linearly, a higher fraction of the work is redundant at
higher parallel granularities, so the execution time does not drop in exact proportion to
the increase in flop/s.

9

256 512 768 1024 1280 1536 1792 2048
0

2000

4000

6000

8000

10000

12000

Avg. Vertices per Proc.

256 512 768 1024 1280 1536 1792 2048
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Execution Time (s)

256 512 768 1024 1280 1536 1792 2048
0

0.2

0.4

0.6

0.8

1

1.2

Implementation Efficiency

256 512 768 1024 1280 1536 1792 2048
0

10

20

30

40

50

60

Nonlinear Iterations

256 512 768 1024 1280 1536 1792 2048
0

10

20

30

40

50

60

70

80

Mflop/s per Proc.

256 512 768 1024 1280 1536 1792 2048
0

50

100

150

Aggregate Gflop/s

Figure 4: Parallel performance for a fixed size mesh of 2.8 million vertices run on up
to 2048 ASCI Red 333 MHz Pentium Pro processors.

10

Table 1: Transonic flow over M6 wing; fixed-size mesh of 357,900 vertices.

No. Cray T3E IBM SP SGI Origin
Procs. Steps Time Eff. Steps Time Eff. Steps Time Eff.

16 55 2406s — 55 1920s — 55 1616s —
32 57 1331s .90 57 1100s .87 56 862s .94
48 57 912s .88 57 771s .83 56 618s .87
64 57 700s .86 56 587s .82 57 493s .82
80 57 577s .83 59 548s .70 57 420s .77

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

200

250

300

Asci Red

T3E

Asci Blue

Aggregate Gflop/s
vs. # nodes

Figure 5: Fixed-size parallel scaling results: flop/s.

5.4 Parallel Scalability across Flow Regimes

Trans-Mach convergence comparisons of the same problem are given in Table 2. Here
efficiencies are normalized by the number of timesteps, to factor convergence degrada-
tion out of the performance picture and measure implementation factors alone (though
convergence degradation with increasing granularity is modest). The number of steps
increases dramatically with the nonlinearity of the flow, as Mach rises; however, the
linear work per step decreases on average. Reasons for this include smaller pseudo-
timesteps in early nonlinear iterations and the increased hyperbolicity of the flow. The
compressible Jacobian is far more complex to evaluate, but its larger blocks (5 × 5
instead of4 × 4) concentrate locality, achieving much higher computational rates than
the corresponding incompressible Jacobian.

11

Table 2: Flow over M6 wing on SGI Origin; fixed-size mesh of 357,900 vertices
(1,431,600 DOFs incompressible, 1,789,500 DOFs compressible).

No. Time per Per-Step Impl. FcnEval JacEval
Procs. Steps Step Speedup Eff. Mflop/s Mflop/s

Incompressible (4 × 4 blocks)

16 19 41.6s — — 2,630 359
32 19 20.3s 2.05 1.02 5,366 736
48 21 14.1s 2.95 0.98 7,938 1,080
64 21 11.2s 3.71 0.93 10,545 1,398
80 21 10.1s 4.13 0.83 11,661 1,592

Subsonic (Mach 0.30) (5 × 5 blocks)

16 17 55.4s — — 2,002 2,698
32 19 29.8s 1.86 0.93 3,921 5,214
48 19 20.5s 2.71 0.90 5,879 7,770
64 20 14.3s 3.88 0.97 8,180 10,743
80 20 12.7s 4.36 0.87 9,452 12,485

Transonic (Mach 0.84) (5 × 5 blocks)

16 55 29.4s — — 2,009 2,736
32 56 15.4s 1.91 0.95 4,145 5,437
48 56 11.0s 2.66 0.89 5,942 7,961
64 57 8.7s 3.39 0.85 8,103 10,531
80 57 7.4s 3.99 0.80 9,856 12,774

Supersonic (Mach 1.20) (5 × 5 blocks)

16 80 19.2s — — 2,025 2,679
32 81 10.6s 1.81 0.90 3,906 5,275
48 81 7.1s 2.72 0.91 6,140 7,961
64 82 5.8s 3.31 0.83 7,957 10,398
80 80 4.6s 4.20 0.84 9,940 12,889

12

10
2

10
3

10
4

10
2

10
3

10
4

Asci Red

T3E

Asci Blue

Execution Time (s)
vs. # nodes

Figure 6: Fixed-size parallel scaling results: execution time.

6 Conclusion

High sustained scalable performance has been demonstrated on simulations that use
implicit algorithms of choice for unstructured PDEs. In the history of the peak per-
formance Bell Prize competition, PDE-based computations have led (or been part of
leading entries containing multiple applications) in 1988, 1989, 1990, and 1996. All of
these leading entries have been obtained on vector or SIMD architectures, and all were
based onstructuredmeshes. The last (1996) and most impressive of these PDE-based
entries was executed on 160 vector nodes of the Japanese Numerical Wind Tunnel
(NWT), and ran at 111 Gflop/s. The 227 Gflop/s sustained performance of our unstruc-
tured application on a hierarchical distributed memory multiprocessor in the SPMD
programming style exceeds that of the 1996 entry by a factor of two.

The achieved flop/s rate is less important to computational engineers than are so-
lutions per minute of discrete systems that are general enough to be employed in pro-
duction design, as PETSc-FUN3D is now employed. In addition, PETSc-FUN3D is
a portable message-passing application that runs on a variety of platforms with good
efficiency, thus lowering the total cost of achieving high performance over the lifetime
of the application.

7 Acknowledgments

Computer time was supplied by Argonne National Laboratory, Lawrence Livermore
National Laboratory, NERSC, Sandia National Laboratory, and SGI-Cray.

13

References

[1] W. K. Anderson and D. L. Bonhaus. An implicit upwind algorithm for computing
turbulent flows on unstructured grids.Computers and Fluids, 23:1–21, 1994.

[2] W. K. Anderson, R. D. Rausch, and D. L. Bonhaus. Implicit/multigrid algorithms
for incompressible turbulent flows on unstructured grids.Journal of Computa-
tional Physics, 128:391–408, 1996.

[3] D. F. Bailey. How to fool the masses when reporting results on parallel computers.
Supercomputing Review, pages 54–55, 1991.

[4] Satish Balay, William Gropp, Lois Curfman McInnes, and Barry Smith.
The Portable, Extensible,Toolkit for Scientific Computing (PETSc) ver. 22.
http://www.mcs.anl.gov/petsc/petsc.html , 1998.

[5] X. C. Cai. Some domain decomposition algorithms for nonselfadjoint elliptic and
parabolic partial differential equations. Technical Report 461, Courant Institute,
New York, 1989.

[6] High End Crusader. Peak performance versus bandwidth. HPCC Week, NOV
1998.

[7] High End Crusader. Towards a U.S. sparse-matrix policy. HPCC Week, DEC
1998.

[8] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. Toward realistic
performance bounds for implicit CFD codes. In A. Ecer et al., editor,Proceedings
of Parallel CFD’99. Elsevier, 1999.

[9] W. D. Gropp, L. C. McInnes, M. D. Tidriri, and D. E. Keyes. Parallel implicit
PDE computations. In A. Ecer et al., editor,Proceedings of Parallel CFD’97,
pages 333–344. Elsevier, 1997.

[10] G. Karypis and V. Kumar. A fast and high quality schema for partitioning irregular
graphs.SIAM J. Scientific Computing, 20:359–392, 1999.

[11] D. K. Kaushik, D. E. Keyes, and B. F. Smith. On the interaction of architec-
ture and algorithm in the domain-based parallelization of an unstructured grid
incompressible flow code. In J. Mandel et al., editor,Proceedings of the 10th
International Conference on Domain Decomposition Methods, pages 311–319.
Wiley, 1997.

[12] D. K. Kaushik, D. E. Keyes, and B. F. Smith. Newton-Krylov-Schwarz methods
for aerodynamic problems: Compressible and incompressible flows on unstruc-
tured grids. In C.-H. Lai et al., editor,Proceedings of the 11th International
Conference on Domain Decomposition Methods. Domain Decomposition Press,
Bergen, 1999.

[13] C. T. Kelley and D. E. Keyes. Convergence analysis of pseudo-transient continu-
ation. SIAM J. Numerical Analysis, 35:508–523, 1998.

14

[14] D. E. Keyes. How scalable is domain decomposition in practice? In C.-H. Lai
et al., editor,Proceedings of the 11th International Conference on Domain De-
composition Methods. Domain Decomposition Press, Bergen, 1999.

[15] J. D. McCalpin. STREAM: Sustainable memory bandwidth in high per-
formance computers. Technical report, University of Virginia, 1995.
http://www.cs.virginia.edu/stream .

[16] B. F. Smith, P. Bjorstad, and W. Gropp.Domain Decomposition. Cambridge
University Press, 1996.

[17] G. Wang and D. K. Tafti. Performance enhancements on microprocessors with
hierarchical memory systems for solving large sparse linear systems.Int. J. High
Performance Computing Applications, 13:63–79, 1999.

15

